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For a degenerate random walk in a 2D Bernoulli environment without local 
traps, computer results show a non-Wiener behavior. For a better exploitation 
of the memory, the analysis is based on the statistics of the first exit time from a 
square. 
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1. I N T R O D U C T I O N  

There are delicate problems where a conjectured anomaly differs from the 
regular behavior very little, e.g., a logarithmic correction versus a power of 
time. In these cases even the use of powerful computers requires increased 
care because of limitations in memory and computing time. 

An example is the asymptotic behavior of random walks in a random 
environment (RWiRE). Here we suppose that the environment is Bernoulli, 
i.e., it is translation-invariant and, for different sites, the random transition 
probabilities are independent. [In the Bernoulli case, for d>~ 2, the typical 
behavior is meant to be (strictly) diffusive, i.e., one with an asymptotically 
linear increase of the mean square displacement and with a Wiener limiting 
process for trajectories in the standard"diffusion scaling. For d =  1, Sinai (1~ 
showed that the displacement of a n.n. RWiRE z,:  ne2~+ satisfying a 
suitable centralization condition increases like (log n) 2, i.e., the behavior is 
strongly subdiffusive. ] 
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According to general belief, there are two critical dimensions dc~ ~< dcr 
determined as follows: if d~> dc~, then any nondegenerate RWiRE on 7/a 
satisfying a suitable centralization condition is diffusive ("nondegenerate" 
means that the random transition probabilities are uniformly bounded 
away from 0) and dcr is the smallest integer with this property; if d>~ do~, 
then sufficiently small random perturbations of the simple symmetric 
random walk (SSRW) satisfying a suitable centralization condition behave 
diffusively and dcr is the smallest integer with this property [the SSRW is 
determined by the nonrandom transition probabilities p(x,  y ) =  (2d) i if 
x, y~77 d, I x - y [  = 1, while a perturbation is considered small if, for a 
suitable ~=~(d )>0 ,  P r o b ( l p ( x , y ) - ( 2 d )  -11~<~)=1 for any x, yeT/a, 
Ix-yl=13. 

We remark that even the formulation of the suitable centralization 
condition is quite a hard problem. 

Relying upon formal perturbation theory and renorm-group methods, 
several authors have agreed that d~ ~ 2 ,  (3 '5"7'9) i.e., in case of small dis- 
order, for d = 2 + e the behavior is diffusive, while for d = 2 -  ~ it is subdif- 
fusive (in fact, Fisher (3) showed that ( z 2 ( t ) )  ~ t 1-~2). As to the critical case 
d =  2, the results also agree that in the increase of the mean square dis- 
placement there may be at most a logarithmic correction to the linear one. 
Fisher {3} obtains (z2(t))  ~ t(1 + c/log t) and Obukhov {v) even derives a 
strictly diffusive behavior. Fisher (a) also gives intuitive arguments for the 
extension of the aforementioned methods to the large-disorder case. On the 
other hand, Bramson and Durrett {1) outline a rigorous construction for 
nondegenerate RWiRE on any ya, d >~ 1, where the nondegenerate environ- 
ment is translationally invariant but not a Bernoulli one and the behavior 
is subdiffusive. Since the environments of their example obey an exponen- 
tial mixing condition, they stress that similar phenomena may also occur 
for Bernoulli environments, thus casting doubt on the folk belief that 
dcr < oe. The environment they construct is given by a random potential 
containing larger and larger traps visited by the random walker sufficiently 
often and this slowdown produces the subdiffusivity. 

Earlier, Marinari et aL (6) made numerical experiments in order to 
check whether the behavior of a two-dimensional random walk in a 
Bernoulli environment had a subdiffusive character. The model studied by 
them looks as follows. To each site in 7/2 there are assigned four numbers 
Q~ (i = 1, 2, 3, 4) uniformly distributed in (0, 1 ). The transition probability 
to each of the four neighboring sites is defined by pi(k)  = Q~(Z4= 1 Q~')-I, 
where k is a parameter ranging between 0 and + oo. For k = 0 this model 
reduces to the SSRW, while in the limit k --. oo only one edge is likely. The 
slowdown of the random walk with increasing k is shown in Table 3 of 
Ref. 6. It is clear that trapping configurations arise in the limit k ~ oo. 
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Obukhov i7) interpreted the observations of Marinari et al. as follows: 
He calculated the distribution function of the exit time from the simplest 
quasitrap (two neighboring sites) for finite k. He proved that above a 
critical k the expected exit time is infinite (in the two-dimensional case the 
critical k value is equal to 6). He concluded that the anomalous effects are 
caused by these local quasitraps, which, of course, do not occur in a non- 
degenerate model. 

An intriguing question is really whether traps analogous to the ones of 
Ref. 1 can be localized sufficiently often in a Bernoulli environment (it is 
worth stressing that we do not understand exactly any of the terms "trap," 
"analogous," "localized," "sufficiently often" of the last clause, but a clever 
simulation may help to imagine the geometry). Our aim, however, is more 
modest: we want to decide whether non-Wiener behavior can occur at all 
in a Bernoulli environment without local traps. To get a more charac- 
teristic answer, we even drop the nondegeneracy condition. 

Our simple model is motivated by the situation described above. We 
have studied the "complementary" case to the limit k = oe: for each site 
there are three possible edges, while the fourth one is forbidden. More 
formally: let f be a random variable assigned independently to each site 
with P ( f  = ei) = 1/4 (i = 1,..., 4), where ei (i = 1,..., 4) are the unit vectors in 
Z 2 and the transition probability to each of the four neighboring sites is 

l 
0 if el= f 

Pi= 1/2 if e i = - f  

1/4 otherwise 

An elementary combinatorial consideration shows that in our model there 
are no finite (local) trapping configurations. It is obvious (see Fig. 1) that 
the boundary of the convex hull of any possible finite trap should contain 
at least one site x through which there exists a supporting line of the 
convex hull not parallel with the coordinate axes. Now there are two 
edges at x showing outside from the convex hull and both of them cannot 
be forbidden. On the other hand, arbitrarily large forbidden regions, 
sort of scatterers (see Fig. 2), can exist. The configuration of Fig. 3 can 
be considered as an almost trapping one. The probability of such a 
configuration is proportional to exp[perimeter of the area- log(I /4)] .  So 
the expected exit time is finite. 

In Section 2 we briefly describe the statistical method used in our 
evaluation of the computer results. The essential argument for using 
statistics based upon the first exit time from a square is that this ensures a 
maximal exploitation of the piece of the environment saved in the memory. 
Section 3 summarizes the numerical results, while Section 4 draws the 
conclusions. 
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Fig. 1. Nonexistence of finite traps. 
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Fig. 2. Example of a finite scatterer. 
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Fig. 3. Example of an almost trap. 

2. S T A T I S T I C A L  C O N S I D E R A T I O N  

Our task is to test the hypothesis Ho that the normed trajectory of the 
moving particle A-l/Zz(At) obeys the functional central limit theorem. Our 
statistical considerations follow the standard textbook concepts (e.g., 
Ref. 4). There are different standard methods for testing the normality of 
t 1/2z(t): e.g., methods of semiinvariants, )~2 square test, Kolmogorov- 
Smirnov test, Sarkadi test. The above methods require numerical 
experiments generating trajectories, which leave the given random environ- 
ment (region) in the course of the observation with a small but not 
negligible probability. 

For a region of a given size and a fixed time necessary for the standard 
tests, the typical trajectories leave the region earlier than the admissible 
observation time for the standard statistical methods. In order to exploit 
the information supplied by the typical trajectories of the moving particle 
until leaving the region, we propose the statistical investigation of the dis- 
tribution of the exit time. Let x and y denote the two coordinates of z. Set 

xTa=min{kJk >>, 1, x(k)~ 77\[-a, a], x(0) = 0} 

It is well known that for a symmetric random walk with diffusion 
coefficient rr on the lattice Z the following result of Erd6s and Kac ~2) is 

8 2 2 / 5 0 / 3 - 4 - 9  



604 Krbmli, kukbcs, and Szbsz 

true: the exit time of the scaled random walk is asymptotically equal to the 
exit time of the Wiener process, i.e., 

[ N2] xlifnooPo TN>t~- 2 = l - - F ( t ) ,  t>~0 (*) 

where 

F(t) = 1 4 ~  ( -1 )k  [ ,~2 ] ---- ~ e x p  - - ~ - ( 2 k + l ) 2 t  
7[k=  0 

For a two-dimensional SSRW the exit time Ta, b from the region [ - a ,  a] x 
[ -b ,b]  under the condition that z ( 0 ) = 0 ~ Z  2 is by definition zT,,b= 
min{xTa, yTb}, where x(t) and y(t) are the two coordinates of z(t). In the 
SSRW case the xT a and yTb are asymptotically independent. So ~T,,b can 
be regarded as the minimum of two independent random variables with 
distributions F(o21/a 2) and F(a2t/b2), respectively, where a 2= 1/2. 

3. N U M E R I C A L  R E S U L T S  

The hypothesis that A-1/2z(At) (A--.oo) is asymptotically a 2D 
Wiener process and the invariance of its 2 • 2 covariance matrix under the 
rotation by rc/2 involve that the x and y components are asymptotically 
independent Wiener processes with a common unknown variance a 2. Thus, 
we should test the hypothesis 

Ho: { zTa, a = min{ xT., yTa } has a distribution function of the form 
G~2(t): = 1 - [1 -F(a2t/a2)] 2 for some {r 2} 

Notice that Ho is a composite hypothesis, allowing a 2 to vary in (0, oo). 
Having a large sample (our simulation considers 50 independent 

random environments of size 401 • 401 with 200 random walks in each of 
them), there are several possibilities to estimate the parameter a 2 of the 
distribution function G~2(t). One of them is the "minimum X 2 estimate": for 
a given partition of the t axis, say ( - 0 %  tl] ,  (tl, t2] ..... (t~, oo) (k>  1), one 
looks for a value 0 "2 for which the tf 2 distance between the empirical 
probabilities 

Pi=e{zT2oo,2oo6(ti, ti+,]} (to = - o % t k + , =  +oo) 

and the theoretical probabilities Qi=G~2(ti+~)--G,~(ti) is minimal. 
Another way is to minimize the J divergence Z i  (Pi-Qi)log(Pi/Qi) 
between the aforementioned two distributions. 
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Table  I ~ 

~2 Z2 ~2 Z2 

0.10 9780635 0.44 271,30 
0.15 215139.5 0.45 389.75 
0.20 29176.89 0.50 1290.22 
0.25 7564.57 0.55 2695.83 
0.30 2137.00 0.60 4652.31 
0.35 399.96 0.65 7262.09 
0.36 247.53 0.70 10680.94 
0.37 139.03 0.75 15124.88 
0.38 69.05 0.80 20883.84 
0.39 33.35 0.85 28341.40 
0.40 28.51 0.90 38003.29 
0.41 51.84 0.95 50533.43 
0.42 101.15 1.00 66804.00 
0.43 174.76 

a Square: 401 x 401. dr= 9. 

First we see how strongly the estimate depends on the chosen distance 
and partition. For  both distances and all reasonable partitions we obtain 
a 2 ~ [-0.39, 0.40]. As an example, Table I shows the dependence of the Z 2 

distance o n  o "2 for the partition consisting of ten cells equiprobable with 
respect to Go.5(t). 

For  testing the hypothesis H o we used ~2 statistics with two partitions 
consisting of 10 and 33 cells equiprobable with respect to Go.4(t ). Our 
conclusion is that for no value a 2 is the shape of the empirical exit time 
distribution acceptable as G~2(t). Tables II and III show the behavior of Z 2 
around its minimum for 10 and 33 cells partitions, respectively. 

Table  II a 

~2 ~2 G2 ~2 

0,385 52.856 0.395 41.955 
0,386 50.342 0.396 42.557 
0,387 48.152 0.397 43,458 
0,388 46.283 0.398 44.655 
0.389 44.732 0.399 46.146 
0.390 43,496 0.400 47.929 
0.391 42.572 0.401 50,002 
0.392 41,959 0.402 52.363 
0.393 41.653 0,403 55.010 
0.394 41.652 0.404 57.941 

u Square: 401 x 401. df=  9. 
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T a b l e  Ill a 

G2 Z2 G2 Z 2 

0.385 93.720 0.395 86.677 
0.386 91.426 0.396 87.867 
0.387 89.492 0.397 89.391 
0.388 87.921 0.398 91.242 
0.389 86.700 0.399 93.428 
0.390 85.827 0.400 95.940 
0.391 85.313 0.401 98.775 
0.392 85.137 0.402 101.932 
0.393 85.311 0.403 105.418 
0.394 85.823 0.404 109.216 

a Square: 401 x 401. d r=32 .  

T a b l e  IV  a 

G2 Z2 ~2 Z2 

0.390 105.314 0.395 102.802 
0.391 104.151 0.396 103.277 
0.392 103.321 0.397 104.076 
0.393 102.820 0.398 105.191 
0.394 102.649 0.399 106.623 

a Square: 201 x 201. df = 9. 

T a b l e  V a 

~Z Z2 ~2 Z2 

0.387 178.354 0.392 175.174 
0.388 177.958 0.393 175.684 
0.389 175.930 0.394 176.554 
0.390 175.303 0.395 177.803 
0.391 175.050 0.396 179.413 

a Square: 201 x 201. d f =  32. 
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Table Vl"  

~2 Z2 G2 Z2 

0.388 50.296 0.393 48.447 
0.389 49.294 0.394 49.016 
0.390 48.611 0.395 49.891 
0.391 48.243 0.396 51.071 
0.392 48.188 0.397 52.555 

a Square: 301 x 301. d f =  9. 

Though, of course, our tables only give a discretization of the function 
)~z(a2), the smoothness of this function implies that the conclusion is true at 
any reasonable signifinance level (for 9 and 32 degrees of freedom the 
critical Z 2 values at level 99.95 % are 29.666 and 64.995, respectively). 

The same statistics were computed for 201 x 201 and 301 x 301 square 
(parts of the same environments as for the 401 x 401 case). Tables IV-VII 
show the behavior of the )~2 values around their minima for these sizes, 
resulting the same conclusion as before. 

Remark. The invariance of the covariance matrix of A-1/Zz(At) 
under the rotation by zt/2 implies that even in the non-Wiener case the 
components are uncorrelated. Nevertheless, it may happen that the two 
components are asymptotically dependent. For the sake of completeness we 
tested the independence of the exit times xTa and yTb for a given 101 x 101 
environment based on 1000 trajectories, again using the )~2 test with 5 x 5 
cells ( 4 x 4  degrees of freedom). For cells equiprobable with respect to 
F(O.5t/502) we find Z2= 11.64. This value is between the 10% and 90% 
quantiles of )~2 6 (9.312 and 23.542). Consequently, this value is consistent 
with the asymptotic independence of the components. 

Table VII a 

~2 Z2 ~2 Z2 

0.388 110.469 0.393 108.205 
0.389 109.287 0.394 108.828 
0.390 108.479 0.395 109.788 
0.491 108.036 0.396 111.103 
0.392 107.942 0.397 112.760 

Square: 301 x 301. df = 32. 
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4. C O N C L U S I O N S  

1. For  the RWiRE introduced in Section 1, statistical evaluations 
based upon the first exit time of the random walk from a square show that 
asymptotically this RWiRE is not a Wiener process. 

2. The hypothesis that the axial components of the random walk are 
independent can be accepted on the basis of our samples. 

3. The RWiRE considered is degenerate, but we expect that, by 
applying our numerical and statistical methods, the diffusivity of non- 
degenerate RWiREs can also be checked. 

4. At present, we are unable to use our numerical method for 
suggesting a rigorous proof for the nondiffusivity of this or other Bernoulli 
RWiREs. 

5. Our method should also be useful for checking the diffusivity of 
other processes where memory constraints may arise, e.g., to check 
whether, on R 1, the trajectory of a Brownian point particle of fixed mass M 
interacting with an ideal gas of identical point particles of mass 1 through 
elastic collisions is asymptotically Wiener or not (cf. Refs. 8 and 11). 

We remark that recent numerical results by Sinai's group (personal 
communication) suggest a nondiffusive behavior. 

5. T E C H N I C A L  R E M A R K S  

We have used the RNDM2 random number generator from the 
CERN LIBRARY. On the IBM 3031 under OSVS1 the required time for 
the simulation was 20 hr CPU. The length of a trajectory was bounded by 
200,000 steps. For every sample the time and site of the exit from the 
401 x 401 square are saved, so future proposed statistics can be computed. 
The reliability of the numerical results obtained was checked by also 
carrying out all methods for the SSRW. ,The  results are in a good 
agreement with the theory, e.g., the empirical distribution of the exit time 
fits the theoretical one: the g 2 value for 9 degrees of freedom was 8.456, 
which is inside the interval between the 40 % and 60 % quantiles. 
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